
Page 1 of 5

Substantial interest exists in (i) increasing feedstock for biofuel and bio-
product production (USDOE, 2011, 2016, 2017), (ii) reducing nitrogen 
(N) export to the environment (USEPA Science Advisory Board, 2007; 

Galloway et al., 2008; NAE, 2017), (iii) implementing sustainable intensifica-
tion (Tilman et al., 2011; Garnett et al., 2013), and (iv) using cover crops to 
provide ecosystem services (Braat and de Groot, 2012; Costanza et al., 2014; 
Blanco-Canqui et al., 2015; Basche et al., 2016). These can be competing goals if 
increased biofuel production increases N export (Donner and Kucharik, 2008). 
Incorporating winter rye (Secale cereale L.)harvest into a corn (Zea mays L.)–
cover crop–soybean [Glycine max (L.) Merr.] rotation could positively address 
all four goals and provide additional producer revenue.

Growing a winter rye cover crop can increase biofuel feedstock supplies 
without reducing food production (Baker and Griffis, 2009; Feyereisen et al., 
2013; Shao et al., 2015; Jean et al., 2017) and can reduce N drainage loads 
(Strock et al., 2004; Kaspar et al., 2012; Kladivko et al., 2014; Malone et al., 
2014a). Harvesting or grazing cover crops can also provide ecosystem services, 
thus enhancing the multifunctionality of the system (Blanco-Canqui et al., 
2015).

Shao et al. (2015) showed that fertilizing and harvesting winter rye can 
increase feedstock supplies and producer revenue compared with unfertil-
ized rye, but N losses to subsurface drainage and net energy potential of the 
system were not investigated. Studies have addressed various combinations of 
potential producer revenue, N loss to the environment, and net energy poten-
tial of agricultural systems that include harvested winter rye (e.g., Rotz et al., 
2002; Igos et al., 2016; Ramcharan and Richard, 2017). But studies are needed 
that simultaneously address potential producer revenue, N loss to subsurface 
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Abstract: Harvesting fertilized rye (Secale cereale L.) cover crop has been 
suggested as a method to increase producer revenue and biofuel feedstock 
production, but drainage N loss impacts are currently unknown. Using the 
tested Root Zone Water Quality Model (RZWQM) across several N rates, spring 
application of 120 kg N ha-1 prior to winter rye harvest reduced drainage N loss 
by 54% compared with no cover crop and by 18% compared with planted rye 
that was neither fertilized nor harvested. Estimates of producer revenue and net 
energy were also positive, with 8.3 Mg ha-1 of harvested rye biomass. If confirmed 
by field studies, these results suggest that double-cropping fertilized rye is a 
promising strategy to increase producer revenue, increase net energy production, 
and reduce drainage N loss.
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Core Ideas

•	 Fertilizing winter rye increased estimated 
revenue and harvestable biomass.

•	 Fertilizing winter rye increased net energy 
production.

•	 Harvesting fertilized winter rye reduced 
simulated drainage N loss.

•	 Rye revenue in response to fertilizer rate 
plateaued at approximately 120 kg N ha−1.

•	 Field studies are needed to evaluate fertilized/
harvested rye cover crop.

Abbreviations: CC, cover crop; CCH, unfertilized harvested cover crop; CCH_L_x, late harvest 
of fertilized cover crop; DM, dry matter; NCC, no cover crop.

Published online January 25, 2018

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rob.malone@ars.usda.gov


Page 2 of 5 AGRICULTURAL & ENVIRONMENTAL LETTERS

drainage, and net energy potential of corn–soybean systems 
in the US Midwest that include harvested and fertilized dou-
ble-cropped winter rye.

The Root Zone Water Quality Model (RZWQM) has been 
used to investigate crop yield and nitrate leaching in China 
(Sun et al., 2018), where the model validation was described 
in a previous study (Sun et al., 2016). The model has been 
thoroughly tested in Iowa for numerous subsurface drained 
corn–soybean systems (Thorp et al., 2007, 2008; Malone et 
al., 2010, 2014b; Fang et al., 2012), including several with 
winter rye as a cover crop (Li et al., 2008; Qi et al., 2011; 
Malone et al., 2014a; Gillette et al., 2018).

This study (i) simulates the effects of harvesting a winter 
rye cover crop within a corn–soybean rotation on drainage N 
loss in central Iowa using the field-tested RZWQM reported 
by Gillette et al. (2018), (ii) estimates producer revenue at 
different fertilizer-N rates for rye biomass production, and 
(iii) estimates the net energy potential of rye for selected N 
rates.

Methods
We modeled the no cover crop (NCC) and winter rye 

cover crop (CC) scenarios using the same input parameters 
as Gillette et al. (2018). That study used RZWQM to simulate 
winter rye growth, N uptake, corn and soybean yield, drain-
age N loss, and N2O emissions reasonably well compared 
with 9 yr (2002–2010) of observed central Iowa data. Other 
RZWQM studies suggested the model could acceptably 
predict winter wheat (Triticum aestivum L.) biomass and N 
uptake at different N fertilizer rates (Supplemental Table S1; 
Saseendran et al., 2004; Hu et al., 2006; Fang et al., 2008). 
Therefore, additional scenarios include (i) unfertilized har-
vested cover crop (CCH), where winter rye was harvested 
rather than killed before planting soybean on 15 May, and 
(ii) late harvest of fertilized cover crop (CCH_L_x), where 
rye was fertilized with various N rates (x) from 0 to 160 kg N 
ha-1 in early April and harvested before planting soybean on 5 
June. For CCH and CCH_L_x, the aboveground rye biomass 
was harvested before planting corn on 1 May. The rye fertil-
izer date minimized simulated N loss to drainage and maxi-
mized yield. Corn and soybean were harvested on 1 October, 
which is after crop maturity and somewhat early for central 
Iowa, and the rye cover crop was planted on 5 October. The 
early harvest dates simulated the common practice of aerial 
seeding of rye before harvest because RZWQM allows only 
one crop at a time (Malone et al., 2014a), which resulted in 
additional winter rye growth, additional N uptake, reduced 
N loss in drainage, and little change in simulated main crop 
yield (<1%) compared with later planting. Aerial (broad-
cast) seeding can provide water quality benefits (Fisher et 
al., 2011) but can also be less reliable and cost more than 
seed incorporation after harvest (Fisher et al., 2011; Wilson 
et al., 2014). Corn was planted in even years, and soybean 
was planted in odd years. Model scenarios are summarized 
in Supplemental Table S2.

Producer revenue for harvested rye cover crop (ryer, $ 
ha-1) grown prior to soybean from 2001 to 2010 was esti-
mated following Aizpurua et al. (2010), using the equation 

ryer = (ryeh ´ ryep) − (fertc ´ Nrate), where ryeh is pre-
dicted rye harvest (Mg ha-1), ryep is net price without con-
sidering fertilizer costs ($ Mg-1), fertc is fertilizer cost ($ 
kg-1), and Nrate is the amount applied on 6 April (kg N ha-1). 
A low estimate for producer revenue was calculated using a 
high fertilizer N cost estimate (fertc = $1.33 kg-1; IFB, 2017) 
and low net rye price estimate (ryep = $75 Mg-1). This net rye 
price estimate combined a low estimate of rye product value 
for ethanol plus byproducts provided by Shao et al. (2015) of 
$150 Mg-1 (dry matter [DM]) minus a high rye feedstock cost 
estimate provided by Baker and Griffis (2009) of $75 Mg-1 for 
delivering rye biomass to the farm gate that included plant-
ing and harvesting costs. In comparison, Roley et al. (2016) 
estimated the costs associated with nonharvested winter rye 
cover crops as $151 ha-1 yr-1 (seeds, planting, kill, additional 
management or equipment, etc.).

The FEAT model (Camargo et al., 2013) was used to esti-
mate the energy inputs associated with rye production. This 
included 6.6 GJ ha-1 for the 120 kg ha-1 N fertilizer treatment, 
based on a conversion factor of 54.8 GJ Mg-1 N. Adjusting 
phosphorus (P) and potassium (K) rates for expected har-
vested yield, the energy embedded in P, K, seed, on farm fuel 
use, and transportation of inputs are an additional 5.1 and 
4.5 GJ ha-1 for CCH_L _120 and CCH_L_0, respectively.

Results and Discussion
Winter Rye Growth, Potential Revenue, 
and Nitrogen Uptake

Simulated annual (2001–2010) biomass of pre-soybean–
harvested rye averaged 2.2, 3.7, and 6.4 Mg ha-1 for CCH, 
CCH_L_0, and CCH_L_60, respectively (Fig. 1). The simu-
lated biomass response to fertilizer N was consistent with 
field results published by Shao et al. (2015), where winter rye 
biomass increased from 5.9 to 8.5 Mg ha-1 as fertilizer rates 
increased from 0 and 60 kg N ha-1 (Supplemental Table S1). 
We speculate that our simulated yields were lower because 
the average temperature October through May in central 
Iowa was lower than the Pennsylvania site (Malone et al., 
2014a; PSC, 2017).

Average annual pre-soybean producer revenue obtained 
by harvesting 90% of the simulated winter rye biomass 
increased from $276 ha-1 at a N rate of 0 (CCH_L_0) to a 
maximum of $468 ha-1 at a rate of 140 kg N ha-1, while the 
revenue plateaued around $465 at a rate of approximately 120 
kg N ha-1 (Fig. 1). The producer return to N at 120 kg N ha-1 
was then $189 ha-1 with a harvested rye biomass of 8.3 Mg 
ha-1 (Fig. 1). The predicted average annual soybean yield was 
only reduced by 4% for CCH_L_120 compared with NCC 
(results not shown). Similarly, soybean yield was reported 
to be 7% less following small grain forage and planting 3 
wk later than full-season soybean that followed no winter 
crop (Nafziger et al., 2016). Studies at a greater US latitude 
have reported more substantial reduction in soybean yield 
and producer revenue from double-cropped biofuel systems 
when planting soybean in late June to mid-July (Gesch et 
al., 2014). The 4% soybean yield reduction (0.13 Mg ha-1) 
reduced revenue $52 ha-1 assuming soybean prices were 
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$400 Mg-1 (DM). This all suggests strongly positive revenue 
for harvesting fertilized rye. Corn yields were predicted to be 
reduced <1% for CCH_L_120 compared with NCC (results 
not shown).

The model-approximated fertilizer rate for maximum 
revenue of between 120 and 140 kg N ha-1 was low com-
pared with previously published recommendations for full-
season winter rye fertilization (Fowler et al., 1989; Bland et 
al., 2013) partly because of the values used for ryep and fertc 
and because the winter rye was terminated before maturity. 
Additionally, when the winter rye was sown, simulated soil 
nitrate N to a depth of 90 cm for CCH_L_0 was <60 kg ha-1 
each year. At an initial soil nitrate level of 60 kg N ha-1 in the 
surface 90 cm of soil, Cui et al. (2013) reported optimal N 
rates for winter wheat in the North China Plain to be about 
176 kg N ha-1.

Although cellulosic markets for bioenergy feedstock have 
not yet developed, winter rye biomass can be used within the 
livestock feed industry. The average monthly rye silage prices 
in Pennsylvania during 2016 ranged from $178 to $247 Mg-1 
(DM) (Ishler, 2017), and prices were estimated at $160 Mg-1 
DM in Wisconsin (Barnett and Rankin, 2014). Anderson 
et al. (2016) reported US hay prices of about $96 Mg-1 DM. 
Therefore, even with planting, fertilizing, and harvesting 
costs, the producer revenue associated with incorporating 
rye into the cropping system appears positive.

The simulated aboveground N uptake fraction, calcu-
lated as [(CCH_L_x – CCH_L_0)/Nrate x], where x equals 
the N fertilizer applied in April, ranged from 0.78 to 0.87 
(Fig. 1). This is higher than the <50% reported by Read et al. 

(2011) but lower than the >94% reported by Gu et al. (2016) 
for winter wheat (Supplemental Table S1). Furthermore, 
Gu et al. (2016) reported growing season N mineralization 
at their site exceeded 147 kg N ha-1 while October to May 
simulated mineralization for CCH_L_0 was <70 kg N ha-1. 
These results, along with the results reported by Gillette et al. 
(2018) for unfertilized rye at this site, suggest the simulated 
N uptake by winter rye was reasonable. Furthermore, Fang 
et al. (2008) and Hu et al. (2006) reported that RZWQM 
can simulate the effects of different N application rates on N 
uptake by winter wheat (Supplemental Table S1).

Drainage Nitrate Loss and Net Energy
Compared with “business as usual” (NCC) for 2001 

through 2010, where average drainage N loss was 56.3 kg 
ha-1, planting unfertilized winter rye and killing it without 
harvesting (CC) reduced drainage N loss by 44% (Fig. 1). 
Harvesting the rye 20 d later without April fertilizer applica-
tion (CCH_L_0) decreased N loss by 56%. Using the same 
model parameters as the current study, Gillette et al. (2018) 
concluded that “RZWQM reasonably simulated the relative 
effects of winter rye on N loss in drain flow over the nine year 
period [of field data] compared to the no cover crop system.”

Applying a fertilizer rate of 120 kg N ha-1 to harvested 
winter rye (CCH_L_120) reduced the simulated drainage N 
loss 54% compared with NCC and 18% compared with CC 
(Fig. 1). The N loss with CCH_L_120 was not greater mostly 
because of high average annual calendar year total N uptake 
of all crops (soybean, corn, and rye, roots and aboveground) 
compared with NCC (345 vs. 254 kg N ha-1) and less annual 
net mineralization compared with CC (97 vs. 144 kg N ha-1). 
The simulated winter rye N uptake and biomass seem rea-
sonable as discussed above. The scenario CCH_L_120 had 
lower mineralization compared with CC because of rye 
(and thus N) harvest and removal. More thorough discus-
sions of the RZWQM simulated annual N budget for CC and 
NCC were reported previously (Li et al., 2008; Malone et al., 
2014a; Gillette et al., 2018). Importantly, this reduction in N 
loss represents an additional economic benefit that, albeit 
not directly captured by the producer, accrues to society as a 
whole in the form of improved water quality (Grizzetti et al., 
2011; Wang et al., 2014).

The energy output of 8.3 and 3.7 Mg ha-1 harvested rye 
biomass (CCH_L_120 and CCH_L_0; Fig. 1) were estimated 
at 145.2 and 64.7 GJ ha-1 based on a conversion factor of 17.5 
GJ Mg-1 DM rye (Feyereisen et al., 2013). The net energy 
ratios (output/input) taking into account energy inputs 
associated with rye for CCH_L_120 and CCH_L_0 are both 
strongly positive at 12 and 14, with net energy per hect-
are of 133.5 and 60.2 GJ ha-1, respectively. The 4% reduced 
soybean yield for CCH_L_120 compared with NCC only 
reduced total energy output an additional 4.4 GJ ha-1, assum-
ing a conversion factor of 23.8 GJ Mg-1 DM soybean. With 
increased rye yield from N fertilizer application, the regional 
energy potential is greater than predicted by Feyereisen et al. 
(2013), who concluded double cropping unfertilized winter 
rye across the US corn–soybean belt could provide a major 
energy resource.

Fig. 1. Average annual 2001–2010 RZWQM results. Includes 
90% of above ground rye biomass which was harvested before 
soybean (Mg ha−1); nitrate N in drainage (fraction of maximum, 
which was 56.3 kg N ha−1 for NCC); total aboveground N uptake 
by pre-soybean rye minus N uptake of CCH_L_0 (fraction of N 
applied); and potential revenue from pre-soybean rye (fraction of 
maximum, which was $468 ha−1 for CCH_L_140). NCC = no winter 
rye cover crop; CC = unharvested and unfertilized cover crop; CCH 
= unfertilized harvested cover crop; CCH_L_x = late harvest of fer-
tilized winter rye grown prior to late soybean planting (x indicates 
the rye fertilizer rate, kg N ha−1). Corn was planted in even years 
on 1 May, and soybean was planted in odd years on either 15 May 
(NCC, CC, and CCH) or 5 June (CCH_L_x).
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